Metabolic oscillations in pancreatic islets depend on the intracellular Ca2+ level but not Ca2+ oscillations.

نویسندگان

  • Matthew J Merrins
  • Bernard Fendler
  • Min Zhang
  • Arthur Sherman
  • Richard Bertram
  • Leslie S Satin
چکیده

Plasma insulin is pulsatile and reflects oscillatory insulin secretion from pancreatic islets. Although both islet Ca(2+) and metabolism oscillate, there is disagreement over their interrelationship, and whether they can be dissociated. In some models of islet oscillations, Ca(2+) must oscillate for metabolic oscillations to occur, whereas in others metabolic oscillations can occur without Ca(2+) oscillations. We used NAD(P)H fluorescence to assay oscillatory metabolism in mouse islets stimulated by 11.1 mM glucose. After abolishing Ca(2+) oscillations with 200 microM diazoxide, we observed that oscillations in NAD(P)H persisted in 34% of islets (n = 101). In the remainder of the islets (66%) both Ca(2+) and NAD(P)H oscillations were eliminated by diazoxide. However, in most of these islets NAD(P)H oscillations could be restored and amplified by raising extracellular KCl, which elevated the intracellular Ca(2+) level but did not restore Ca(2+) oscillations. Comparatively, we examined islets from ATP-sensitive K(+) (K(ATP)) channel-deficient SUR1(-/-) mice. Again NAD(P)H oscillations were evident even though Ca(2+) and membrane potential oscillations were abolished. These observations are predicted by the dual oscillator model, in which intrinsic metabolic oscillations and Ca(2+) feedback both contribute to the oscillatory islet behavior, but argue against other models that depend on Ca(2+) oscillations for metabolic oscillations to occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium and Metabolic Oscillations in Pancreatic Islets: Who's Driving the Bus?

Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations are accompanied by oscillations in the free cytosolic Ca2+ concentration (Cac ), which drives pulses of insulin secretion. Both islet Ca2+ and metabolism oscillate, but there is some debate about their interrelationship. Recent experimental data show that metabolic oscillations in some case...

متن کامل

Are metabolic oscillations responsible for normal oscillatory insulin secretion?

Normal insulin secretion is oscillatory in vivo and in vitro, with a period of approximately 5-10 min. The mechanism of generating these oscillations is not yet established, but a metabolic basis seems most likely for glucose-stimulated secretion. The rationale is that 1) spontaneous oscillatory operation of glycolysis is a well-established phenomenon; 2) oscillatory behavior of glycolysis invo...

متن کامل

Glucose Metabolism, Islet Architecture, and Genetic Homogeneity in Imprinting of [Ca2+]i and Insulin Rhythms in Mouse Islets

We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i)) that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J) a...

متن کامل

A mathematical study of the differential effects of two SERCA isoforms on Ca2+ oscillations in pancreatic islets.

Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic beta-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two ...

متن کامل

Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms.

Pancreatic islets of Langerhans display complex intracellular calcium changes in response to glucose that include fast (seconds), slow ( approximately 5 min), and mixed fast/slow oscillations; the slow and mixed oscillations are likely responsible for the pulses of plasma insulin observed in vivo. To better understand the mechanisms underlying these diverse patterns, we systematically analyzed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2010